QM Homework 1: Fundamental Concepts

1. Prove from the definition of commutators that the following expressions hold for any operators A, B, C :
(a) $[A, B]=-[B, A]$
(b) $[A+B, C]=[A, C]+[B, C]$
(c) $[A B, C]=A[B, C]+[A, C] B$
(d) $\left[A^{-1}, B\right]=-A^{-1}[A, B] A^{-1}$
(e) $[[A, B], C]+[[B, C], A]+[[C, A], B]=0$
2. Derive the formula:

$$
e^{A} B e^{-A}=\sum_{n=0}^{\infty} \frac{1}{n!}[A,[A, \ldots[A, B] \cdots]]
$$

where the $n^{\text {th }}$ term on the right-hand side has n commutators (and n appearences of the operator A.
Use the following approach: Consider the operator $F(\lambda)=e^{\lambda A} B e^{-\lambda A}$ that depends on a number λ. Expand $F(\lambda)$ in a Taylor series by differentiating it repeatedly with respect to λ. Pay attention to the fact that A and B generally do not commute. Eventually set $\lambda=1$.
3. Using the rules of bra-ket algebra, prove the following for arbitrary operators X, Y, a Hermitian operator A whose eigenstates and corresponding eigenvalues are $|a\rangle$ and a respectively, and arbitrary states $|\psi\rangle,|\phi\rangle$:
(a) $\operatorname{tr}(X Y)=\operatorname{tr}(Y X)$
(b) $\operatorname{tr}(|\psi\rangle\langle\phi|)=\langle\phi \mid \psi\rangle$
(c) $f(A)=\sum_{a}|a\rangle f(a)\langle a| \quad$ (hint: use Taylor expansion to define a function of an operator)
4. (a) Prove that:

$$
\sigma_{i} \sigma_{j}=\delta_{i j}+i \epsilon_{i j k} \sigma_{k}
$$

where $i, j, k \in\{x, y, z\}, \delta_{i j}$ is the Kronecker symbol (1 if its indices are equal, otherwise 0), $\epsilon_{i j k}$ is the Levi-Civita symbol (0 if any two indices are equal, changes sign if any two indices exchange place, $\epsilon_{x y z} \equiv 1$), and

$$
\sigma_{x}=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right) \quad, \quad \sigma_{y}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad, \quad \sigma_{z}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

are Pauli matrices. We are using Einstein's notation: the repeated index k on the right-hand side is summed over all of its possible values.
(b) Then show that:

$$
\exp (i \boldsymbol{\sigma} \hat{\mathbf{n}} \theta)=\cos \theta+i \boldsymbol{\sigma} \hat{\mathbf{n}} \sin (\theta)
$$

for any angle θ and unit-vector $\hat{\mathbf{n}}$ in real space. $\boldsymbol{\sigma}=\left(\sigma_{x}, \sigma_{y}, \sigma_{z}\right)$ is the vector of Pauli matrices.
5. A $\operatorname{spin} S=\frac{1}{2}$ system is known to be in an eigenstate of $\mathbf{S} \hat{\mathbf{n}}$ with eigenvalue $+\frac{\hbar}{2}$, where $\hat{\mathbf{n}}$ is a unit-vector lying in the $x z$-plane that makes an angle γ with the positive z-axis.
(a) Suppose S_{x} is measured. What is the probability of getting $+\frac{\hbar}{2}$?
(b) Evaluate the dispersion of S_{x}, i.e.:

$$
\left\langle\left(S_{x}-\left\langle S_{x}\right\rangle\right)^{2}\right\rangle
$$

Check the special cases for $\gamma=0, \gamma=\frac{\pi}{2}$ and $\gamma=\pi$.

Other suggested problems: Sakurai (2nd edition) 1.6, 1.9, 1.13, 1.15, 1.16, 1.21, 1.23, 1.26, 1.33

